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Abstract—Congestion control plays an important role in the In-
ternet to handle real-world network traffic. It has been dominated
by hand-crafted heuristics for decades. Recently, reinforcement
learning shows great potentials to automatically learn optimal
or near-optimal control policies to enhance the performance
of congestion control. However, existing solutions train agents
in either simulators or emulators, which cannot fully reflect
the real-world environment and degrade the performance of
network communication. In order to eliminate the performance
degradation caused by training in the simulated environment, we
first highlight the necessity and challenges to train a learning-
based agent in real-world networks. Then we propose a frame-
work, ARC, for learning congestion control policies in a real
environment based on asynchronous execution and demonstrate
its effectiveness in accelerating the training. We evaluate our
scheme on the real testbed and compare it with state-of-the-art
congestion control schemes. Experimental results demonstrate
that our schemes can achieve higher throughput and lower
latency in comparison with existing schemes.

Index Terms—Reinforcement learning, network system, con-
gestion control

I. INTRODUCTION

Congestion control (CC) remains a cornerstone issue in the
networking field, attracting much attention from both academia
and industry [1] [2] [3]. The goal of congestion control is
to dynamically regulate the sending data at each sender to
maximize the total throughput, minimize the queueing delay,
and minimize the packet loss [4].

So far, the research on congestion control can be roughly
divided into three phases [5]. In the first phase, general-
purpose congestion control schemes such as Reno [6] and
Cubic [7] were proposed. These schemes treat all data flows
and users fairly and became the default deployment method.
Subsequently, researchers tried to develop special-purpose
schemes [8] [9] to improve congestion control and studied
how these new schemes coexist with the default ones. In the
latest phase, researchers made no assumptions about what
schemes are used by others, and designed schemes to help
flows survive well with other traffic [10] [11] [12]. In the first
two phases, the developed schemes deal with issues such as the
complexity of network topology, the difference in the number
of flows, and the traffic demand/dynamics, which are already
very complicated. In the third phase, it becomes considerably
more complicated due to the ignorance of the behavior of other
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co-existing traffics. The traditional congestion control schemes
mainly focus on the problems faced by the first two phases,
not being able to solve the problems in the latest phase.

Recently, machine learning technologies are developing
rapidly and can solve complex problems, bring new oppor-
tunities to enhance congestion control. Deep reinforcement
learning (RL) [13], one of the latest breakthrough techniques
in machine learning filed, has been demonstrated as a powerful
approach to sequential decision-making problems [14]. Inte-
grating deep RL into the network system is emerging as a new
interdisciplinary research topic, which has attracted a signif-
icant amount of research attention. It has been demonstrated
that reinforcement learning can improve the performance of
networking, including but not limited to congestion control
[10] [15], video streaming [16] [17], network topology [18]
and routing [19].

To the best of our knowledge, almost all of the existing RL-
based approaches for congestion control are designed based on
simulated environments. For example, Remy [10] generates
congestion control rules for TCP based on simulations in NS-
2 [20]. Aurora [15] and Custard [21] use deep RL to generate
policies that map the observed network statistics to the sending
rate based on their simulators. Indigo [12] learns the best con-
gestion windows (cwnds) offline based on the emulator, i.e.,
Mahimahi [22]. Although these schemes use reinforcement
learning methods to cope with varying network conditions, the
trained models could not be directly applied in the real network
system. Because either these emulators or simulators are based
on numerical calculations and cannot actually send packets,
or the package-level simulators cannot truly reflect the real-
world network. According to the study presented in [12], the
performance difference between the simulation environment
and the real system can be more than 17%. Moreover, simply
deploying the agent trained from the simulation environment in
the real-world systems will encounter several practical issues
such as the inference cost, the real-time decision-making issue,
the generalization problem.

In this paper, we move one step further to address the issues
faced by simulation-based RL congestion control schemes,
aiming to design a learning-based congestion control frame-
work that enables network operators to train an RL agent for
congestion control in real environments instead of simulators.
First, we highlight the key challenges of training an RL agent
for congestion control in the real world. To solve the issues of
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congestion control in the latest phase, we show that congestion
control is viewed as a learning task. And the RL agent can
be trained to seek optimal or near-optimal control policies
based on out-of-sync information provided by the sender and
the receiver under diverse network conditions. To address the
RL training challenges in the real network environment, we
present a framework called ARC for training an RL agent in
a real environment rather than a simulator. Specifically, we
leverage an asynchronous learning algorithm to train a deep
reinforcement learning model for congestion control based
on the environment where the data packets are actually sent
instead of numerical calculations in simulators.

We implement ARC in user space for congestion control.
The sender and receiver are implemented based on the UDP
transmission skeleton. We deploy our trained agent in the
sender, which infers the best sending rate by leveraging both
historical trajectories and the current network state. We con-
duct experiments to compare the performance of our schemes
with state-of-the-art congestion control schemes such as Cubic
[7], BBR [11], and Reno [6]. Extensive evaluations show that
our scheme achieves high average throughput similar to that
of BBR, and reduces the latency by 43% than that of BBR.
Due to its insensitive to stochastic packet loss, ARC achieves
higher throughput than that of Cubic and Reno. In addition, we
test the RL agent under various parameters, such as the neural
network architecture and the decision interval, and present the
evaluation results, which shed light on the practical concerns
about using the RL-generated model for congestion control in
real networks.

II. MOTIVATION AND CHALLENGES

In this section, we first give our motivation for using a
trained reinforcement learning agent for congestion control in
real-world networks. Then we present the key challenges to
design such an RL-based congestion control scheme in the
real environment.

A. Motivation

Traditional congestion control schemes usually use metrics
such as packet loss and round-trip time (RTT) as decision
signals to adjust the sending rate or cwnds. Existing rule-based
methods elaborately make use of these signals but achieve poor
throughput when stochastic packet loss or network jitter occurs
frequently. In fact, the performance of a congestion control
scheme can be affected by many factors, including traffic
patterns, link failure, dynamic latency, packet loss, application
requirements and so on. It is difficult to design optimal or even
near-optimal control policies from complex network environ-
ment with predefined static rules. As reinforcement learning
is able to generate proper actions in highly dynamic and
complicated environments such as the real-world networks, we
can train a reinforcement learning agent to generate models for
congestion control by leveraging both the historical trajectories
and the current network state to dynamically adjust the sending
rate or the cwnds at the sender.

Recently, many RL-based congestion control schemes have
been proposed. The RL training process allows agents to
learn packet-sending rules from enormous observations and
feedback in the specific environment, thereby showing great
promise in handling problems in complicated networks. How-
ever, existing approaches usually train agents in simulated
environments to speed up the training process or easily control
the training environment. Network simulators such as NS-
2 [20] and real-time emulators such as Mahimahi [22] and
Emulab [23] have been used to train RL agents, since these
simulators are simple to use and can be easily controlled to
simplify RL training.

However, simulation-based agent training has many disad-
vantages. For example, packet-level simulators such as NS-2
can simulate the process of sending data but suffer low accel-
eration ratio, resulting in longer training time in comparison
with training based on the real network system. Different from
the packet-level simulators, emulators such as Mahimahi can
provide numerical calculations about the network behaviors.
Although such emulators can provide a certain acceleration
ratio, how to properly set the parameters to emulate a target
network still remains as an open problem [12]. Moreover,
the simulated environment could be blocked by the senders
when they are waiting for the actions from the RL agent. The
blockage can take a few milliseconds, which will negatively
impact the transmission performance in the real networks [24].

To the best of our knowledge, there are no RL-based
solutions for congestion control that have been implemented
in real-world production systems. The preliminary results
presented in [12] [25] and [26] show that directly applying the
RL agents trained on the simulation or emulation platforms to
the real-world systems without modification will lead to the
under-utilization of bandwidth and long delay because such
platforms cannot fully represent the real-world systems.

B. Key Challenges

To use a reinforcement learning agent for congestion control
in the real-world systems, the following challenges must be
addressed.

1) Training RL agent challenges: The first challenge is that
there are many differences in the training mechanisms between
a simulated environment and the real-world networks. First,
when an RL agent is trained in a simulated environment, the
learning model can be updated after each step of training
[10] [15], since the simulation environment can be easily
blocked to enable such updates. However, in the real world,
the environment (i.e., the network sender) cannot be blocked.
Hence, the learning model cannot be updated after each step of
training, which will seriously degrade the training efficiency.
Second, the exploration operation in the traditional RL training
scheme, such as exploring the sending rate or cwnds, is
generally added to the training process of the agent. However,
in the real world, the model used by the sender is fixed
during each episode of training because of the non-blocking
environment. Therefore, the exploration mechanism cannot be
directly added to the agent.
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Fig. 1. The framework of ARC.

2) Real environment challenges: The second challenge is
that training an RL agent in the real world is much more
difficult than that in a simulated environment, such as blocking
environment, out-of-sync information, inference cost. Firstly,
the current simulated environments for RL-based CC adopt
the synchronous RL approach, e.g., using the OpenAI Gym
[27] to block the simulation environment for model training,
which is controlled by the RL agent. The real network system
could not be blocked by the sender and the RL agent is
driven by the system. Hence, the RL agent for congestion
control deployed in the real world will affect the real network
throughput. Recently, several schemes using remote procedure
calls (RPC) to communicate between the real system and
the agent have been proposed [25] [26]. Even though these
schemes provide a standard request-response design pattern,
they still suffer from the drawbacks of delaying action and
blocking the environment.

Secondly, the information needed for RL training, such as
the sending rate, the number of sent packets, the receiving
rate or loss rate, comes not only from the sender but also the
receiver. In a simulation or emulation platform, such informa-
tion can be easily obtained. The {state, action, reward} tuple
can be easily synchronized because the RL agent is allowed
to block both the sender and receiver. In the real world, both
the receiver and the sender cannot be blocked. Hence, it is
challenging for the RL agent to obtain synchronized state,
action and reward in real network environments.

Thirdly, since the RL agent needs to run in a real-time
environment, the sender should get the control policy from
the trained model. The inference cost will affect the gain in
many metrics such as throughput and latency. The inference
time should be faster than the data transmitted over the real
network so that it will not impact the transmission perfor-
mance. Therefore the overhead of the RL model should be
carefully handled. In the congestion control problem, if the
inference time is too long, the sender will wait a long time to
get a decision, thereby degrading the network performance.

III. THE FRAMEWORK OF ARC
In this section, we present the framework of ARC, a rein-

forcement learning based congestion control scheme designed
based on real network environments. Figure. 1 depicts the
framework of ARC based on a general environment with
one connection between one sender and receiver through the
network links. ARC has five key modules: the Info Collection
module in both the sender program and receiver program
gathers the information required for training. The collected
raw information is stored in the Info Storage module and will
be processed to output the {state, action, reward} tuples that
will be used by the RL learning module to train the agent.
The Model inference module enables the trained agent to make
decisions on adjusting the sending rate. A Controller is used to
control the decision interval, probabilistic exploration, and the
parameters for training. In the following, we first describe the
workflow of ARC and then describe the detail of the functions
provided by each module.

A. Workflow of ARC
ARC follows an environment-driven design for congestion

control. Before training an RL agent in the system, the sender
loads the RL-based model which can be updated periodically.
To get the action, the sender takes the decision form the current
trained RL agent in the sender program. The agent makes
decision-making on the sender every decision interval, i.e.,
the agent follows a policy of the sending rate for congestion
control. Specifically, each time a connection is established, the
agent will synchronize its policies with the trainer to obtain
the current learned policies. In addition, the training of the RL
agent and the execution of sending data are asynchronous. The
information required by training an RL agent is collected to
the information storage module from the sender and receiver.
Meanwhile, the RL learning module then generates the agent
through step by step training from the historical trajectories.

B. Information Collection
When a connection is established between a sender and one

receiver, the sender transmits the data to the receiver according

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:36:51 UTC from IEEE Xplore.  Restrictions apply. 



to the control policy from the trained agent. The training data
of the agent comes from the raw information providing by
the sender and receiver. When receiving an ACK, the sender
obtains the current RTT and the received sequence number
of packets. At an interval t, the sender computes statistics
based on ACKs such as the sent bytes, ack bytes, average RTT,
average packet sent interval. When the receiver receives the
packets, it also counts received bytes with the same interval.
The information is collected from the sender and the receiver
respectively and stored in the Info storage.

C. Information Storage & Processing

To deal with the out-of-sync information problem, ARC
stores the raw information collected by both the sender and
the receiver at the storage module located at the sender side
respectively. The raw data is then processed based on the RL
formulation (See in §IV-A). In ARC, congestion control is
formulated as a sequential decision-making problem under the
RL framework. The states of RL are the network statistics
from the sender, the action is the sending rate for the sender,
and the reward depends on the statistics of throughput, delay,
and loss rate at an interval t. The collected data is processed
to generate the {state, action, reward} tuples to be used for
training the agent. In particular, to match the delayed action
with the corresponding state and the reward, the calibrate timer
in ARC at the sender starts up when the first packet is sent and
a similar timer at the receiver starts up when the first packet
is received.

D. RL Leaning

To tackle the non-blocking environment problem, ARC
adopts an asynchronous RL training with off-policy correction.
The trainer takes sampled historical data from the information
storage and uses them to learn the optimal or near-optimal
control policies. Compared with the conventional RL algo-
rithm, the exploration mechanism and trigger event in ARC
are different. The exploration mechanism is added to the
system environment (See in §IV-B). Moreover, ARC follows
environment-driven design with an asynchronous RL agent,
not an agent-driven design. We detail the asynchronous RL
algorithm for congestion control in the following section (See
in §IV-C).

E. Model Inference

To obtain the output of the model, the sender should
load the model, feed inputs, and retrieve inference output.
The inference module is located at the sender program. In
the initial connection, the sender loads the default model.
During the transmission processing, the sender continually get
a decision from the model inference on adjusting the sending
rate. Meanwhile, the RL learning module continually updates
the model based on the training data at the sender.

F. Controller

To deal with the inference cost issue, a controller is used
in ARC to control the decision interval and the parameters

for RL training. A decision interval is defined as the amount
of time to perform one control loop to solve the real-time
decision of the congestion control problem, i.e., the decision
interval when the agent is invoked. The controller also controls
the probability exploration rate and maximum exploration
scope. In addition, ARC decouples the training algorithm and
execution algorithm. The controller controls the agent learning
and data transmission respectively. The data sent will not
be blocked during agent learning. The sender in the real-
world network executes the agent for the next action. Once
a full trajectory such as 64 consecutive interval information is
obtained, this information is trained to update the agent. All
interactions are asynchronous and will not block the sender.

IV. RL ALGORITHM FOR CONGESTION CONTROL

In this section, we present the detailed design of the RL
agent for congestion control. We first describe the formula-
tion of state, action, and the reward function for congestion
control. Then we present the RL exploration strategy and the
asynchronous training algorithm.

A. RL Formulation

The congestion control problem can be modeled as rein-
forcement learning task where the learning agent provides
dynamic policies to map the feedback from the network and
the receiver (i.e., reward) to the selection of the sending rate
(i.e., action) based on current observations (i.e., state).
State: The state in the RL agent is a snapshot of the
environment at the decision interval that can be observed by
the agent after the sender selects the rate. Let st be the state
at time step t. st is defined as a vector that includes: (i) the
averaged sent packet interval, (ii) the packet loss, (iii) the
average delay, (iv) the sent bytes, and (v) the last action. The
statistics can be easily obtained from the sender by tracing the
ACKs signals and the decision intervals.
Action: The action indicates how the agent responds to the
observed state of the environment. In our formulation, the
action at is defined as the sending rate of the sender, which
is a continuous variable. The agent takes an action at the end
of each decision interval.
Policy: The policy is a set of rules that map from the
observed states of the environment to actions to be taken
when in those states. The policy learning is the core of a
reinforcement learning agent. In congestion control, the action
is selected by a policy µ(st). The policy is represented by
neural networks with a manageable number of adjustable
parameters of neural networks. In ARC, we leverage the
deterministic policy gradient algorithm [28] to generate the
policy which can output the deterministic action from the
continuous action space.
Reward: A reward is the overall benefit of an RL agent when
it follows a policy. In each decision interval, the sender updates
the observed state and executes an action to adjust the sending
rate, which results in an instantaneous reward rt. Generally,
the instantaneous reward of congestion control only depends
on the current state and action, and it is independent of the
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previous states and actions. Hence, we adopt a linear function
that rewards throughput while penalizing loss and delay to
achieve high throughput, low latency, and low congestion loss
rate. The reward rt is defined as:

rt =
throughputt
throughputmax

− avg delayt
delaymax

− (loss ratet−α) (1)

where throughputt is the instantaneous observed throughput
of the receiver and the throughputmax is the maximum value
among all the history throughput; delaymax is the maximum
delay of the current connection; avg delayt is the average
delay; loss ratet is the observed packet loss rate from the
sender and receiver. Parameter α represents an acceptable
network packet loss rate. In ARC, α is set to 0.05. Generally,
the RL agent selects an action to maximize the expected
cumulative reward ε[σT

t=0γ
trt], where γ ∈ (0, 1) is a discount

factor and T is the total learning steps.

B. Exploration Strategy

Exploration is essential and important in the training process
of reinforcement learning. Through exploration, the agent
could obtain sufficient transition samples to gain experience
and attempt to achieve the optimal and near-optimal policy.
In traditional RL training algorithms, the RL exploration adds
some random noise into the decision-making mechanism of
an action. However, since the RL trainer is independent of the
environment, the exploration strategy cannot be directly added
to the RL trainer. Therefore, in our approach we deploy the
exploration mechanism to the environment, that is, the sender
first uses random sampling with normal distribution to obtain a
random noise, then adds the noise to the action obtained from
the agent. Finally, the sender executes the updated action to
explore possible strategies.

C. Asynchronous Training

Reinforcement learning usually takes a long time to train in
simulators and training in the real world will be more difficult.
To speed up the training, ARC uses an asynchronous training
mechanism in which network communication and agent train-
ing is executed asynchronously. ARC can start up multiple
environments. Each environment is configured to experience
a different set of network conditions. However, these agents
continually send their {states, actions, rewards} tuples to the
learning agent. For each sequence of tuples that it receives, the
learning agent uses the DDPG [28] algorithm. DDPG uses the
actor-critic algorithms with off-policy to compute a gradient
and perform a gradient descent step. The actor-networks are
responsible for choosing the proper action. The critic networks
estimate the value of an action and conduct to update the
parameters of actor and critic networks. The learning agent
then updates the actor-network and the environments load the
new model when they are initialized. Algorithm 1 shows the
pseudocode of the asynchronous learning to speed up training.
Note that this can happen asynchronously among the learning
and multiple environments, i.e., there is no blocking between
the learning agent and environments.

Algorithm 1 The asynchronous training of ARC
1: Initialize NumEnv //The maximum number of environ-

ments
2: Parallel do
3: for i in 1...NumEnv:
4: env.run() // Environment running parallelly
5: end for
6: agent.learn() // The agent learning parallelly
7: End parallel do
8: function ENV.RUN()
9: while Training is not end do

10: current model = get model()
11: run receiver()
12: run sender(current model)
13: if Sending is end then
14: Store information from sender and receiver
15: end if
16: end while
17: end function
18: function AGENT.LEARN()
19: while Training is not end do
20: load experience replay
21: current model = DDPG.learning()
22: end while
23: end function

V. IMPLEMENTATION

We implement a user-space prototype of ARC for conges-
tion control. The sender and receiver are implemented in the
user space by adapting the UDP-based transmission skeleton.
ARC replaces the TCP sender-side rate control with the model
inference module, data collection and storage module, and
rate control module. ARC also provides a controller to set
the decision interval, the training parameters, and so on. The
RL agent of ARC is implemented with PyTorch [29].

The prototype of ARC provides the interfaces to implement
the RL-based agent congestion control in the real network
environment. The detailed interfaces are as follows. The pa-
rameter config function uses to set the parameters for decision
interval and training. Both the send and the receive functions
are running in non-blocking mode. The send function sends
data according to the action returned by the choose action
function. The output of choose action function is the sending
rate of sender based on the input of state. The receive function
is responsible for receiving data. When each training episode
ends, the store information function stores the information
from the sender and the receiver to the data storage server.
In ARC, we adopt Redis [30], which is an open-source (BSD
licensed) and in-memory data structure store, as the storage
server.
Model Inference: To implement an RL agent for the real-
world networks, the sender usually loads the trained model,
feeds the preprocessed state, and retrieves the action. Thus,
the learning-based design should consider the inference cost
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and the heterogeneity of the implementation platforms, which
can impact the gain on throughput and delay for congestion
control. To deal with this problem, we transform the RL agent
into the ONNX (open neural network exchange) [31] format,
which provides a standard for representing machine learning
models and enables models to be deployed in a variety of
frameworks and runtimes. The sender program uses ONNX
Runtime [32] for inference in ARC. The inference time of
ARC takes approximately 0.8 ms (See in §VI-A).
Asynchronous Execution: Existing RL-based congestion
control environments such as Aurora [15] and Indigo [12]
follow the synchronous RL approach e.g., using the Gym [27]
to block the sender for model execution. In the synchronous
mode, packets could not be sent until getting the action.
This makes it infeasible for deployment because a sender
waiting for the decision-making from the RL agent for a few
milliseconds, which will negatively impact throughput [24]. To
address this problem, the processes of model inference and
sending packets are asynchronous in our implementation so
that the model inference process can not affect the running
of congestion control. Figure. 2 illustrates the asynchronous
execution process. First, the trained model is converted into the
ONNX model and loaded in the sender program. The sender
invokes the model inference for the action according to the
current state in every decision interval. Meanwhile, the sender
is not blocked and still sends the packets according to the last
action until it gets the new action.

VI. EVALUATION

In this section, we evaluate the performance of ARC through
experiments on a real testbed and compare it with several
congestion control schemes deployed in the Linux kernel.
We also evaluate the impact of various parameters such as
the decision interval and neural network architecture on the
performance of ARC.

A. Setup

To evaluate ARC, we use tc [33] to regulate the bandwidth,
minimum RTT, and stochastic packet loss in the bottleneck
links. To generate the control policies for congestion control,
ARC’s agent uses four fully connected layers in which there
are 2 hidden layers with 128 neurons. The actor-network takes
the processed features from the state and outputs the sending
rate with the “tanh” activation function. The critic-network
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Fig. 3. The performance of congestion control in ARC.

takes the inputs and uses the same architecture as the actor-
network to conduct feature extraction. The final output of the
critic network is a linear neuron without activation function.
During the training stage, we empirically set the discount
factor γ = 0.9, which implies that the current action will
be influenced by 10 future steps. The learning rates of the
actor and critic networks are configured to be 10−5 and 10−4,
respectively.

B. The Performance of ARC

To validate the effectiveness of ARC, we repeatedly run
ARC under different network conditions. In this section, we
first evaluate the performance of throughput and delay of ARC.
Then we describe the training performance of ARC under
different network conditions.

1) The performance of throughput and delay: To evaluate
the performance of congestion control of ARC, we set up a
dynamic link with an average bandwidth of 10Mbps, 100 ms
minimum RTT, and 1% stochastic packet loss. The in-network
buffer is set to 100 KB for the bottleneck link. We test ARC
against Cubic [7], Reno [34], and BBR [11] over the same
link. ALL schemes are repeatedly tested 10 times and each
test lasts for 30 seconds.

The results are shown in Figure. 3. As expected, these
schemes have different trade-off points between throughput
and delay. Due to the stochastic packet loss on the bottleneck
link, Cubic and Reno fail to achieve high throughput. Both
ARC and BBR achieve nearly 10 Mbps on throughput since
they are not sensitive to stochastic packet loss. However, BBR
has significantly higher delay than ARC due to its inaccuracy
estimation about minimum RTT and bandwidth. On average,
the delay of ARC is 43% lower than that of BBR. This is
because the RL agent of ARC takes the maximum throughput,
minimum RTT and minimum packet loss as its target during
the training process, ARC tries its best to achieve higher
throughput and lower delay without packet congestion loss
under the current network conditions.

2) The performance of training: To evaluate the training
performance in the real networks, we compare the training
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results in the following three scenarios with different network
links which refer to [12].

• Steady Ethernet link: 10 Mbps bandwidth, 100 ms mini-
mum RTT, 0% loss rate, and 125KB buffer.

• Dynamic Wi-Fi link: 10 Mbps average bandwidth, 100
ms minimum RTT, 1% packet loss, and 100KB buffer.

• Dynamic cellular link: 3 Mbps average bandwidth, 200
ms minimum RTT, 5% packet loss, 75KB buffer.

We use the same parameters to train RL agents separately
in the above scenarios. Figure. 4 shows the critic-network
value under these three network scenarios which represent
the expected cumulative reward. When the value of the critic
network no longer grows, we say the RL algorithm has
converged and the model has been well trained. It can be
seen that the critic value reaches a stable value at about 200
episodes in the above three networks.

We also evaluated the test performance of the models in the
training process which is computed by the reward function.
As shown in Figure. 5, the average test performance of the
above models in the intermediate process is lower. Hence, the
throughput is also low and the delay is high. For the well-
trained model, the average test performance is the largest,
thus the model can achieve higher throughput and lower
delay. In contrast, the average test performance of the cellular
network increases fast, whereas in the Ethernet link and Wi-Fi
link grow slowly. This is because the average bandwidth of
the cellular network scenario is smaller. The action space is
smaller accordingly than that of the other two links, so the
optimal or near-optimal policy can be found faster.

C. The Microbenchmarks of ARC

In this section, we describe the microbenchmarks that can
provide a deeper understanding of the behavior of ARC and
shed light on some practical concerns with the RL-based con-
gestion control schemes. Firstly, we compare the effect with
different decision intervals on throughput. We then analyze
the impact on inference time with different neural network
architectures on inference time.

1) Decision interval: The decision interval is one of the
important parameters in ARC, and improper setting on deci-
sion interval can affect the performance of ARC. On the one
hand, if the decision interval is too small, the number of model
inference will increase, thereby resulting in long the inference
time. On the other hand, if the decision interval is too large,
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Fig. 6. The performance of different decision interval.

it is impossible to track the changes in network conditions in
time, thereby failing to react to the changes in network states.

To test the effect of different decision intervals on network
performance, we evaluated the throughput under different
decision intervals with different RTTs. Considering the recent
studies of congestion control, the interval used varies from
10 ms [25] to 4 RTT [35]. We conduct experiments with
decision intervals ranging from 10 ms to 4 minimum RTT
under the bottleneck links with different RTTs. Figure. 6 shows
the throughput under different decision intervals. It can be seen
that the performance under the decision interval of 1/2 RTT is
better than that of other decision intervals, even on the network
conditions with different RTTs. Benefiting from 1/2 RTT, the
state reflects the changes in network conditions in time. At
the same time it may ensure sufficient time so that the action
could be fully executed in the case of no congestion, that is,
the data sent by the sender according to the decision-making
can reach the receiver, thereby the estimation of reward is
more accuracy.

2) Neural network architecture: ARC uses the learning
architecture (See in §VI-A) to convert to ONNX format. To
understand the impact of different neural network structures
on the model inference, we swept a range of neural network
parameters with different numbers of neurons and numbers of
hidden layers to test the inference time. First, using a single
fixed hidden layer, we varied the number of neurons in the
hidden layers. Each set is tested 10 times and Figure. 7 shows
the average inference time with different numbers of neurons
in the hidden layer. As expected, the inference time gradually
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Fig. 8. The inference time with different hidden layers.

increases as the number of neurons increases. In addition, the
inference time of the ONNX model is less than that of the
PyTorch [29] model.

Next, we varied the number of hidden layers where the
number of neurons in each layer is fixed to 128. Figure. 8
shows the inference time under different numbers of hidden
layers. Interestingly, we find that the shallower neural networks
of 2 hidden layers yield the best performance. The inference
time steadily rises as we increase the number of hidden layers.
Adjusting these parameters to construct deeper neural net-
works may improve performance. Meanwhile, these complex
neural networks generally take a long time to train. Compared
with the PyTorch model, when the hidden layer is a shallow
network, the inference time of the ONNX model is slightly
higher than that of the PyTorch model. When the number of
hidden layers gradually increases, the inference time of the
ONNX model is much lower than that of the PyTorch model.
Therefore, if the neural network structures for RL-based CC
are small, Both the PyTorch model and the ONNX model
can meet the transmission requirements. If the neural network
architecture is larger, using the ONNX model could improve
the performance of throughput than that of the PyTorch model.

VII. RELATED WORK

Many efforts have been devoted to applying reinforcement
learning to network transmission systems, including the studies
that use reinforcement learning to congestion control. More-
over, some researches have focused on the learning-augmented
computer system. We summarize the related work as follows.
RL for Internet congestion control Simulators and emula-
tors, such as NS-2 [20] and Mahimahi [22], have been used
by researchers to design novel congestion control schemes
because they provide various parameters to simulate different
network conditions including traffic pattern, queue manage-
ment, and stochastic loss rate. However, properly setting
these parameters to emulate a target network is still difficult.
Custard [21] and Aurora [15] leverage deep RL to generate a
policy that maps observed network statistics to a proper send-
ing rate or cwnds for Internet congestion control. They used
offline learning strategy because the simulated environment
can be blocked by the RL agent. When evaluating in the real
world, the offline-trained agents cannot block the environment.
Moreover, the inference time usually impacts the performance
in real networks.

Pantheon [12] provides a set of benchmark algorithms
of congestion control and a shared evaluation platform. In-
digo [12] is another method of learning-based CC scheme with
the data gathered from Pantheon. Indigo learns to “imitate” the
oracle rules offline, in which the oracle is constructed with
ideal cwnds given by the emulated bottleneck’s bandwidth-
delay product. R3Net [26] is an RL-based recurrent network
for Real-time communications (RTC), allowing rapid adjust-
ment to complex and dynamic network conditions. It also uses
a simulation environment. When evaluating R3Net in the real
world, the R3Net agent is deployed into the ONNX format
and uses ONNX Runtime for inference in the RTC system.
Though the training in the simulation could speed up training,
it might result in poor performance due to the huge gap is
between the simulation environment and the real world.

Learning-augmented computer system. In [25], Park dis-
cussed some challenges in designing RL systems and devel-
oped a platform for researchers to experiment with RL for
the computer systems. The platform consists of 12 real-world
system-centric optimization problems, such as congestion con-
trol, job scheduling, SQL database query optimization, and so
on. However, Park’s congestion control environment adopts the
user-space implementation together with RPC for environment
agent communication. It takes a synchronous approach with a
short step-time of 10 ms, thereby only suitable to very small
models. AutoSys [36] is another work about the co-design of
learning algorithms to the system. It provides two principles to
make systems learnable and two principles to make learning
manageable for the case of web search. However, it lacks the
performance validation and does not address the challenges
for learning algorithms to be implemented in real systems.

There are other specific applications such as video stream-
ing, live streaming, which perform offline training in simula-
tion and running in the real-world. For example, ABRL [37]
adopts a training method that depends on simulator to cope
with the changing network conditions and deploys the trained
agent in the real world. L3VTP [38] is a live video transmis-
sion platform used to speed up the live ABR research loop.
L3VTP trains agents on simulation platforms and only focuses
on the low-latency video transmission. Different from these
solutions that use the simulated environment to train agents,
our solution ARC trains the agent in real-world networks and
achieves better performance.
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VIII. CONCLUSION

Combining reinforcement learning and congestion control is
a promising approach to improve the performance of the real-
world network systems. However, there are some challenges
to be addressed before successfully deploying an RL agent in
the real world. To eliminate the huge gap between training RL
agents in simulation platforms and running in the real-world
networks, We propose a framework, ARC, to solve congestion
control problem with reinforcement learning in the real world
with asynchronous policy. We have designed an RL-based
congestion control algorithm and trained it in the real network
environment. We implement ARC in the user space. Extensive
evaluation results show that ARC can achieve high throughput
and low delay than the default scheme of the Linux kernel in
the real environments.
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